
KoolMoves
User Guide

Buttons

KoolMoves User Guide

Lucky Monkey Designs, LLC
South Carolina, USA
www.koolmoves.com

The information in this document is subject to change without notice
and should not be construed as a commitment by Lucky Monkey
Design. While every effort has been made to insure the accuracy of the
information contained herein, Lucky Monkey Design assumes no
responsibility for errors or omissions. Lucky Monkey Design assumes
no liability for damages resulting from use of the information contained
in this document.

Flash™ is a registered trademark of Adobe, Inc. in the United States
and other Countries.

The software described in this document is furnished under license and
may be used or copied only in accordance with the terms of that
license.

This publication may be reproduced, photocopied, stored on a retrieval
system, or transferred without the expressed prior written consent of
Lucky Monkey Design.

PRINTING HISTORY

November 2006 Version 0.1
November 2006 Version 0.2

ii

http://www.koolmoves.com/

KoolMoves User Guide

Table of Contents

Preface: About This User Guide..v
Introduction..v
Button Properties... 1

Symbol / Library Symbol.. 1
States..3
Look... 4
Effects.. 5
Behavior.. 5

Creating Buttons.. 7
Creating a Button from Scratch... 7
Creating a Button via Property Data View..12
Motion & Effects in Buttons..13
Converting a Visual Element to a Button.. 15
Loading Images into Button States...20

Adding Buttons to Movies... 21
The Button Gallery...21
Creating & Importing from Button Libraries...22

Button Actions..23
Actions Property > Dialogs..24
Actions Property > Action Script…..35
Timeline Button ActionScript... 41

Adding Sound to Button States...43
Button Gallery Categories (Folders).. 45

Abstract... 45
Business & Communication & People..45
Email & Internet.. 46
Music... 46
Navigation 1.. 46
Navigation 2.. 47
Odds & Ends 1..47
Odds & Ends 2..47

Movie Clips as Buttons.. 49
Summary...51

iii

KoolMoves User Guide

iv

KoolMoves User Guide

Preface: About This User Guide
This user guide is an adjunct to the KoolMoves manual, and is not intended as a stand alone
document. The sole purpose of this user guide is to illustrate a narrow area of functionality in
the KoolMoves application. Users of this guide are expected to have reasonable access to the
KoolMoves user manual, as this guide contains references to the operation of KoolMoves and its
interface, both of which are covered extensively in the manual. This user guide has been
composed and typeset in Windows™ Word®, and exported to the Adobe™ Portable Data File
(PDF®) format.

Any questions about or comments on this user guide can be Private Messaged to pherbrick via
the KoolMoves support forum at http://www.flashkit.com/board/forumdisplay.php?forumid=24.

Introduction
Modern computer software cannot operate without Buttons. Buttons are graphic “hot spots” that
make things happens. Flash buttons are used in interactive animations, websites, and client
applications written in ActionScript. There are many commercial applications that do nothing
but create Flash buttons for use in websites.

In KoolMoves, any shape, group of shapes, imported image, movie clip or static text object can
be turned into a button with a single mouse click. Additionally, KoolMoves comes with about
70 professionally designed buttons that can be previewed and added to a movie with just a few
mouse clicks.

The power and complexity of the button actions that can be created with KoolMoves are only
limited by the skill and knowledge of the user. On the other hand, beginners can make powerful
buttons without any knowledge of ActionScript, or much experience with KoolMoves either, by
using dialog windows.

The Button Properties section provides a detailed look at how buttons are handled in
KoolMoves. Read the Creating Buttons section for step by step guides to making buttons. The
three ways that actions can be applied to buttons are covered in the Button Actions section. To
add emphasis to your buttons, check out the Adding Sound to Button States section.

If you have any questions about buttons that are not covered in this user guide, please search the
KoolMoves support forum at http://www.flashkit.com/board/forumdisplay.php?forumid=24
before posting your question (and be descriptive with the subject field – this helps make the
forum more useful). ActionScript questions can also be researched in the KoolMoves forum –
many useful ActionScript references, both online and hardcopy, are identified in various posts
there, as well as code samples for specific problems.

Preface / Introduction v

http://www.flashkit.com/board/forumdisplay.php?forumid=24
http://www.flashkit.com/board/forumdisplay.php?forumid=24
file:///C:/Program Files/KoolMoves/Z Manuals/User Guides/KM_UG-Buttons/KoolMoves_Manual.pdf

KoolMoves User Guide

Preface / Introduction vi

KoolMoves User Guide

Button Properties
Buttons cannot be created dynamically, though many properties can be changed dynamically
through ActionScript programming. In KoolMoves, the properties of objects placed on the Stage
at authoring time are edited with the Properties Data View.

Symbol / Library Symbol
There are Symbols, and then there are Library Symbols. Buttons can be both. However, how a
button acts as a symbol depends on how it is copied.

Copying Buttons
In KoolMoves, a symbol is a shape that is shared among several
instances. By default a button is always a symbol; in the Properties
data view you can switch between the symbol’s properties or its
states.

When a button is copied from one key frame to another, the appearance and behavior of the
buttons are permanently linked. Changes to the appearance and / or actions in one instance of
the button are reflected in all instances of the button. However, you are not limited to just
making clones; copying and pasting a button to its source key frame opens the Copy Button
window. Here you can choose between two additional types of copied buttons.

A button pasted with the Share button states option has linked appearances with its parent button.
Changes to a button’s appearance will be reflected in all instances of the button. Changes to an
instance’s behavior will not be reflected in all other instances – in fact, these copies start with no
actions defined.

A button pasted with the Make a complete copy of button states option is a brand new button that
starts with the same appearance and actions of the source button. Changes to this button will not
be reflected in its parent button or any instances linked to the parent button.

To briefly recap the three types of button copies that can be made:

• Paste copy to new key frame – you automatically get linked appearance and behavior,
• Paste copy to source key frame – choose linked appearance, and
• Paste copy to source key frame – complete copy with no links to other buttons.

Button Properties 1

KoolMoves User Guide

Buttons & the Symbol Library
Library symbols are movie clips, buttons, and components that
have been stored in the symbol library. The library symbol field
indicates whether a button instance is based on a symbol library
button; clicking on this field does not do anything. Use View >
Symbol Library or press F11 to open the symbol library.

Under the Buttons tab there is a list of all
buttons stored in the symbol library; their
descriptions and the number of times they
have been added to the movie are displayed.
The symbol library is used to organize, track
and edit button designs used throughout a
movie. A change to a library button’s
appearance is reflected in all instances, but
each button has unique actions like the
linked appearance buttons described in
Copying Buttons.

On the stage select a button and press Ctrl-F11 (Shapes >
Add to Symbol Library) to add it to the symbol library.
Give the button symbol a descriptive name, either about
its appearance (if multiple copies with different actions
will be used) or its purpose (if all copies will have the
same or similar actions).

Regarding the button library commands:

• Click on Play to preview a button’s states in an internal player.
• Click on New to create a button from scratch (see Creating a Button from Scratch).
• Click on Edit to change the appearance of a button (see Creating a Button from Scratch).
• Click on Delete to remove a button from the Symbol Library.
• Click on Usage for a listing of that symbol’s instance names in

the movie.
• Link Name is grayed out – it doesn’t apply to buttons.
• Click on Describe to edit the button’s description.

• Click on Replace to replace all instances of the
button in the movie with another button (button
actions are not affected). Select a replacement
button from the drop down list.

Button Properties 2

KoolMoves User Guide

States
A button can have three different appearances depending on the mouse actions. These are
known as button States. Ideally, each state has a unique appearance.

The Up state is the default state, and reflects the normal appearance of the
button - the mouse pointer is not currently over or clicking the button.

The Over state occurs when the mouse pointer is over the button’s “hit area”.

The Down state occurs when the mouse is left-clicked on the button’s hit area.
Button actions are usually executed when the button is clicked or released.

The button area that is receptive to the
mouse pointer is called the Hit Area. The
hit area is expressed as a percentage of the
area of the Up state of the button, and
defaults to 100%. A 200% hit area is twice
as big horizontally and vertically as the
outline of the button object.

The mouse pointer usually changes appearance while over the hit area (the
actual pointer appearance depends on local PC settings).

Button Properties 3

Up Over/Down

KoolMoves User Guide

Look
Under the Look tab, click on the button’s coordinates to open the
Numeric Transform window (Ctrl-Alt-N, or from the menu
Transforms > Numeric…). Use this for precision adjustments to a
button’s position, dimensions, and rotation angle.

Caveat: Changes made through the
Position/size field affect the entire
button; and are reflected on the stage.
Scale and rotation changes are not
reflected in the individual button
states.

To effect changes to a single state, or to maintain a WYSIWYG relationship between a button
and its states, perform all edits within the button states.

To edit a button state, first click on the States button.

You can now make changes to the Up state’s appearance, or select the Down or Over states to
edit.

See Creating a Button from Scratch for details on editing button states.

Button Properties 4

Actual Up State

Button’s Stage Appearnace

KoolMoves User Guide

Effects
The Fade/size and Spin/rotate effects use tweening to impart
motion and changes to an object’s appearance. Adjust the number of
“tween” frames between key frames to regulate the speed of these
effects. These effects are covered in Chapter 5 of the KoolMoves
user manual.

Flash Filters allow for the quick creation of compelling designs;
with tweening, the filtering can actually be animated. Because the
filters are rendered in real time, there is an associated CPU
processing cost. For details on how to use this feature, and some
sample images, please see the KoolMoves Filters User Guide.

Blend modes combine the colors of the destination image with the
source image, on a pixel by pixel basis, to produce the final image.
For details on how to use this feature, and some sample images,
please see the KoolMoves Blend Mode User Guide.

Behavior
The Behavior tab contains those properties that define a button’s
performance. The Ease in/out and Bitmap caching fields are covered
in this section, while the other fields are covered elsewhere.

The Library symbol field was covered in the Symbol / Library
Symbol subsection.

The Hit area field was covered in the States subsection.

The Actions field is covered in the Button Actions section.

The Sound field is covered in the Button Sounds section.

Button Properties 5

http://www.koolmoves.com/support.html
http://www.koolmoves.com/support.html

KoolMoves User Guide

Ease in/out
The Ease In, Ease Out property is used to set the tweening acceleration profiles of an object.
KoolMoves comes with 31 acceleration profiles, including the default Linear tweening.

By default, an object that is animated using tween frames moves at a uniform (linear) rate in the
tween frames between two key frames. But in the acceleration profile below (Elastic In), the
object moves at an uneven rate; in fact, the object actually moves backwards a couple times (like
a spring).

Bitmap caching
A major performance limiting factor has been Flash’s requirement to update vector graphic
images with each screen refresh, even if nothing has changed. In movies with many objects on
the screen, this brought down the practical frames per second performance capabilities. Bitmap
caching reduces the load on the renderer by storing copies of selected objects in the Flash Player.

The Flash Player will convert the visual contents of buttons into bitmaps and store them in the
runtime Flash Player memory. These copies are used for screen refreshes instead of rendering
the images from scratch, until the contents of the movie clip change, at which time a new bitmap
copy is rendered and stored.

So as long as a button doesn’t change, caching can seriously reduce the load on the renderer,
especially if the button happens to contain complex vector images (lots of lines, curves, gradient
fills, etc.). However, what constitutes a change? If the button moves up or down or sideways –
no problem. On the other hand, rotations, scaling, flipping, animated filters, basically any effect,
will require the button to be rendered.

Button Properties 6

KoolMoves User Guide

Creating Buttons
In KoolMoves, any visual element can be turned into a button. However, some elements are
better suited than others for specific applications. For example, to test a piece of code, all you
need is a visible object on the stage that you can click on – for example a solid circle or word.
For fancier buttons that contain effects or animation, it is often easiest to create a movie clip that
has the desired appearance and effects, and then convert the clip to a button.

Creating a Button from Scratch
Clicking the Add Button tool creates an empty button and opens the Up State edit screen.
Returning to the Main Movie without adding any visual elements to the Up State will result

in a 10 pixel by 10 pixel empty button being placed on the Stage. Once the button is not selected
it will be completely invisible, and the only evidence of its presence will be its entry in the List
of Shapes data view.

Below is the button edit environment for the Up state. At this point you can draw shapes, import
an image, or add an empty movie clip. The cross hair indicates the center of the work area (0, 0).
The actual button shape will center on the button contents in the Up state, regardless of their
location in the button work area. Use the cross hairs, as a reference point, when working with
the Numeric Transform tool.

The contents of the Over or Down states will not affect the size, shape or location of the button’s
hit area. The Hit area is solely determined by the contents of the Up state.

Creating Buttons 7

Level Navigation
States Navigation

Button Work Area

Current State

KoolMoves User Guide

Use the Shape drawing tool to add a circle to the Up State.

Click on the Over state button, and then click on Copy up state.

If you start with a copy of the Up state, and don’t change the visual element’s dimensions, the
contents of the different button states are automatically lined up.

Creating Buttons 8

KoolMoves User Guide

Double click on the circle to open the Properties data view, and change the Over state circle’s
color.

After you’ve changed the Over state circle’s color, and while the circle is still selected, hold
down the Shift key and press the right arrow a few times. You will see a faint image of the Up
state circle to the left. This onion skinning effect helps you align on the Up state when you draw
your other states from scratch. Okay, now Shift-left arrow the green circle back over the blue
circle.

Note: The Over and Down states do not affect the shape, size or location of the hit area - the hit
area is always centered on the Up state contents, and the size will not change to match the
contents of the Over or Down states.

Let’s add some text to the Over state. Click on the text tool, and then click in the work area to
the right and lined up with the top of the green circle, and add the following text:

Creating Buttons 9

KoolMoves User Guide

This button does
absolutely nothing,
except change colors.

Then click on OK.

Creating Buttons 10

KoolMoves User Guide

Next, click on the Down state button, copy the Over state, change the circle’s color, change the
text to “I told you so!” and vertically center the text object relative to the circle.

Click on the Main movie button, position the button on the stage so it will display properly, and
then Ctrl-Spacebar to see the button in action.

Creating Buttons 11

Up

Over

Down

KoolMoves User Guide

Creating a Button via Property Data View
Shapes, shape symbols, static text objects, and
groups of shapes can be converted to buttons by
setting the "Is a Button" Behavior field to yes in
the Properties Data View.

Objects converted to buttons are placed in the Up
state. Click on the States button in the Property
data view to open the button edit environment
(discussed in the previous section). In the edit
environment you can edit the Up state and create
the Over and Down states.

Once an object becomes a button, it cannot be
changed back; the source object is removed from
the stage and placed in the new Up State. To
recover an item that has been converted to a
button, open the button edit environment, copy the
Up State contents, and then paste back to the
stage.

Creating Buttons 12

KoolMoves User Guide

Motion & Effects in Buttons
Effects and motion scripts cannot be applied within a button state, as the button state is just a
static holding area. For this reason, the Button Edit toolbox, menus and Property data view do
not allow you to apply effects or motion scripts to shapes in a button state. However, all these
things can be done within a movie clip, and it is very easy to make buttons out of movie clips in
KoolMoves.

Before we get into converting visual elements into buttons, let’s make a couple movie clips.
Open a new project file and create the following:

1) Text with Drop Shadow Filter

Use the Static Text tool in the toolbox to create a text object containing
“Click Here”.

Select the text object and use the Convert to Movie Clip tool.

Select the Movie Clip and in the
Properties data view, under Effects,
open the Filters GUI and apply Drop
Shadow.

2) Shape with 3D Effect

Use the Star Draw tool to draw a five pointed star (should be slightly higher than
your “Click Here” text object).

Creating Buttons 13

KoolMoves User Guide

In applying effects to a shape, we can either apply the effect to the shape and then place it in a
movie clip, or place the shape in a movie clip and apply an effect to the movie clip. Let’s see
what effects are available for a shape versus a movie clip.

Shape Effects Movie Clip Effects
 Motion Script Motion Script
 Fade/Size Fade/Size
 Spin/Rotate Spin/Rotate
 3D Filters
 Drop Shadow Blend Mode

We have already applied an effect to a movie clip with the Drop Shadow Filter, so let’s go the
other way this time – we will apply a 3D motion to our star, and place the star in a movie clip.

Select the Shape and
in the Properties data
view, under Effects,
open the 3D GUI and
apply the Astroids
effect. Set the Loop
property to yes.

Select the Star and click on the Convert to Movie Clip tool.

We now have two movie clips to play with. In the next section we will use
them to make a button.

Creating Buttons 14

KoolMoves User Guide

Converting a Visual Element to a Button
Select the Click Here movie clip created in the previous section, and click
on the Convert to Button tool. In the List of Shapes data view below, you
can see that mc1 is now btn1 (and has also been moved up in the content
stack).

Once an object becomes a button, it cannot be changed back; the source object is removed from
the stage and placed in the new Up State. To recover an item that has been converted to a button,
open the button edit environment and copy the object, then paste it back to the stage.

Creating Buttons 15

KoolMoves User Guide

Now we are going to move mc2 (the star movie clip) to the Over state. In the main movie, select
mc2 and move it to the clipboard by either using Ctrl-X or Edit > Cut Shapes.

Next, select btn1 (the Click Here button), and in the Property data view click on
the States button.

Click on the Over state button below the menu
bar, and this time choose the “I will draw it”
option in the No Over State window.

Next, use Ctrl-V or Edit >
Paste to put mc2 in the Over
state.

Creating Buttons 16

KoolMoves User Guide

You will be asked if the clip frames should be
shared, or if a complete copy of the frames
should be made. Since the original has been
removed from the movie at this point, it
doesn’t really matter. However, since we are
technically moving the clip, let’s select Share
movie clip frames to maintain continuity.

mc2 did not line up over mc1. No biggie, we can fix that quite easily.

You can drag mc2 over mc1, but in this
example we will center it exactly using the
Transform window (Ctrl-Alt-N or
Transform > Numeric).

Note: The origin (0, 0) point in the main movie is in the upper left hand corner of the stage.
However, the 0, 0 point in movie clips and button states is the center of the work area. Not a big
deal when you drag shapes around with the mouse, but something to remember when you start
controlling objects dynamically with ActionScript.

Creating Buttons 17

KoolMoves User Guide

First set the orientation point to Center, then set the coordinates to 0, 0 and
click on Apply. Voila!

Now we need to create a Down State. Click on the Down state
button.

Next we copy the Over state to the Down State. The Over
state contains a movie clip, so this amounts to copying a
movie clip (again!).

But this time we do not want to share frames, because if the two clips are linked together,
changes to one will be reflected in the other. After we are through here, we will edit the Down
state.

Creating Buttons 18

KoolMoves User Guide

At this point we have a button with all three states, but
two of them are identical - we need to alter the
appearance of the Down state. Double click on mc3 to
open the Property data view, and click on the Frames
button.

Creating Buttons 19

KoolMoves User Guide

Double click on the star shape to open the Property Data View, open
the Effects tab, and change the Hue cycle property to 3.

After you’ve changed the property,
you need to move the mouse over
“Click Here” in the preview area to
see the effect.

Loading Images into Button States
When you open the Import image palette in a button state, you only have the Image option.

However, when open the Import image palette from within a movie clip in the button state, the
entire palette is active. You could also have loaded these objects to the stage and converted them
to a button’s Up state, or copied/cut and pasted them to a button state.

Buttons containing raster images (e.g., bmp, gif, jpg, and png) get blurry when resized. Try to
initially design the image to the final button size so minimal resizing will be required. Shapes
drawn in KoolMoves are vector graphics, and will not get blurry when resized.

Creating Buttons 20

Over State Down State Down StateDown State Down StateDown State

KoolMoves User Guide

Adding Buttons to Movies

The Button Gallery
As we have seen, KoolMoves makes it very easy to design unique buttons. The Registered
version of KoolMoves comes with about 70 professionally designed buttons already made.

Click on the Button Gallery tool in the Toolbox.
Click on a folder category to display the contents.

These buttons were created in KoolMoves and were
designed specifically for use in Flash movies. Images
made with the KoolMoves drawing tools are vector
graphics - they can be scaled without getting blurry, and
consume little computer memory.

Click on a button to select it, and press Play to display it in
the Flash stand-alone player or your default web browser.
Move your mouse over the button, and click on the button to
see the different behaviors of the button.

In the browser preview, the buttons will scale themselves to
the window size.

Press Add to add the button to your movie. The
button will be placed in the center of the stage.

Adding Buttons to Movies 21

Over State Preview

KoolMoves User Guide

See Button Gallery Categories for a list of buttons provided with KoolMoves.

The buttons are stored in the
Buttons folder inside the
KoolMoves folder. The
buttons are actually stored in
fun files. swf versions are
included to run in the preview
window.

You can create your own
folders with your own button
designs (up to 12 per folder),
and load them as you need
them.

Creating & Importing from Button Libraries
If you plan on creating and reusing large quantities of buttons, especially buttons that have
common themes, store your buttons in symbol libraries instead of Button Gallery folders. A
symbol library can hold a large number of buttons in a single .fun file, and the buttons are loaded
all at once as opposed to being loaded individually.

Let’s say you’ve created a cowboy themed presentation movie that uses a lot of personally
designed buttons, and you would like to reuse them in future projects. No problem. Start by
creating a symbols folder and a buttons sub folder (e.g., Program Files\KoolMoves\Z
Symbols\Buttons\).

Next, make a copy of the project file and store it in the Buttons folder. Give it a descriptive
name reflecting the buttons common theme and/or purpose (e.g., Cowboy-Navigation.fun).

Now copy all the buttons to the Symbol Library (covered in Buttons & the Symbol Library), then
create a key frame that has copies of all buttons present. This key frame will be your preview
frame.

Finally, delete all other key frames in the project and save the file. This leaves you with a single
frame project file filled with buttons. To load the buttons into the current project, use File >
Insert KoolMoves Movie…, browse to the Buttons folder, and select the file. As the GUI
window previews the selected file, its Symbol Library is copied to the current project’s Symbol
Library. Don’t preview a file more than once – multiple copies of the buttons will be loaded.

Having buttons in the symbol library that are not used will increase the project file (.fun) size,
but will not impact the final movie (.swf) size.

Adding Buttons to Movies 22

KoolMoves User Guide

Button Actions
Buttons detect an event (e.g., onPress, onRelease, onRollover, etc.) and then execute commands
(e.g., navigate movies, load files, launch web pages, etc.), associated with the event. The
behavior of a button is defined either through the Behavior > Actions field in the Property data
view, or by adding ActionScript code to the button’s timeline.

The Actions field can contain ActionScript or customized predefined commands. Commands in
the Actions field travel with the button; using ActionScript code is more efficient than using the
predefined commands.

Timeline ActionScript is the most efficient way to define button actions, but requires a moderate
knowledge of ActionScript. Additionally, the code does not travel with the button, and needs to
be updated each time the button’s name is changed or it is moved to a different level or clip.

Remember:
• The Flash Player tends to skip the first key frame. Unless your movie only has one

frame, buttons and ActionScript code should not be placed on the first key frame.
• ActionScript code is evaluated as it enters the Flash Player. If the actions for a button are

defined on key frame 15 but the button first appears on key frame 3, that button won’t
work until key frame 15 has been “interpreted”. Button actions should be coded at the
beginning of the movie (i.e., key frame two) or placed in the Actions property.

• When testing a movie using Play in Browser (Ctrl-Spacebar), any HTML and SWF files
referenced by the Get URL or Load Movie actions, must be in the same directory as the
fun file for these button actions to work. The same applies to text files referenced by the
Load Dynamic Text command. However, even if these files are in different directories,
they can be made accessible to the internal player by selecting their folder in the “Play
animation from this” field in File > Preferences > Play.

• When working with Netscape web browsers, avoid spaces in the file name as this will
cause problems. Using Http:// in the path may also cause problems with the Netscape
web browser.

• A button underneath a shape will continue to work, even if you can’t see it.
• When buttons or movie clips with button behaviors overlap, the

unobstructed portions will generate the mouse events. Assuming that
each button’s hit area is at 100%, the mouse pointer is over the red
button’s hit area. However, if the blue button’s hit area is 200%, the
pointer is over the blue button’s hit area.

• If you are going to stack movies containing buttons in different levels,
you need to avoid the “button bleed through” effect. In the higher level movie, place a
movie clip the size of the movie at the bottom of the movie’s content stack, add an
onRollover event handler with no actions, and set the clip’s useHandCursor property to
false. This clip will block all buttons in lower level movies.

Button Actions 23

KoolMoves User Guide

Actions Property > Dialogs
To place an action within the button itself, so that the action travels with the button, select a
button and open the Properties Data View.

In the Behavior properties, click on Actions to
open the Button Actions and Sounds window.

The Actions tab is used to create, edit, delete
and organize actions stored in a button.

Click on the plus button with
the drop down menu arrow to

list available actions.

The Action Script… option is used to add ActionScript code to a
button.

The Mouse Effect Only option is obsolete and can be disregarded.

The remaining options allow you to add commands to a button without
knowing ActionScript. Selecting one of these options opens a task
specific dialog window where you will be asked to decide what event
will trigger the action. You may also need to set task specific
parameters.

Button Actions 24

KoolMoves User Guide

The Button Actions and Sounds window’s display area lists the actions that are stored in a
button. A button’s Property data view will reflect the action on the button, unless multiple
actions have been defined, in which case it will display “multiple”.

 Use the Edit button to change the selected action.

 Use the Delete button to remove the selected action.

 Use the Up and Down arrow buttons to move the selected action.

There are seven mouse Events in the action dialog window:

• Press – The mouse button is clicked on while over the button hit area.
• Release – The mouse button is released after clicking on the button hit area.
• Release Outside - The mouse button is clicked on the button hit area and the released

outside the hit area.
• Roll Over – The mouse pointer moves over (enters) a button hit area.
• Roll Out – The mouse pointer moves outside (exits) a button hit area.
• Drag Over – The mouse button is clicked on the button, and without releasing the mouse

button, the mouse pointer is dragged away from the button hit area and then mouse
pointer is dragged over the button hit area.

• Drag Out – The mouse pointer is dragged outside a button after clicking on the button hit
area.

More than one action can be
defined per event, and/or
unique actions can be defined
for every event.

Note: Certain events are linked by their sequence; e.g., a
Press event always occurs before a Release, Release Outside,
Drag Over or Drag Out event.

Button Actions 25

KoolMoves User Guide

Go To URL
The Go To URL action is equivalent to the ActionScript getURL (URL, URL target) global
function, where.

• URL specifies the location (absolute or relative) of the document to load, external script
to run, or command to execute.

• URL target identifies the browser window or frame where the document will be loaded.
Enter the frame name, or select one of the predefined values:

o _blank – opens file in new browser window
o _parent – opens file in current browser frame
o _self – loads the results of a script execution into the current frame
o _top – replaces all framesets in browser with file

In the On Mouse Events section, select which event(s)
will trigger the getURL() command.

In the URL field, enter the document name or
command, including its path where applicable.

In the URL target field, type in the target frame name
or select a frame/window from the drop down list

The KoolMoves Go To URL button action supports the following protocols:

Protocol Format Purpose
File file:///path/filename Access a local file
FTP ftp://path/filename FTP a remote file
HTTP http://path/filename Open a web page
Javascript javascript: command Execute a JS command in a browser
VBscript vbscript: command Execute a VB command in a browser
Mailto mailto:user@domain.com Send email via the default email app
Telnet telnet://domain.com:port#/ Open a Telnet connection

If variables need to be sent to an external script or command, use the Send Form Data command,
which has the same general format and supports the same protocols.

Button Actions 26

mailto:user@domain.com
http://path/filename
ftp://path/filename
file:///path/filename

KoolMoves User Guide

Go To Frame
Use this action to navigate within a movie
– the playhead of the current timeline
jumps to the target frame. Click on the
Key frame drop down list to display the
key frames available in the current scene
(the Scene field appears when the movie
has more than one scene.

KoolMoves automatically updates a
button’s target frame when key frames are
added, deleted and renamed. However,
the internal pointer can get dislocated
when a movie’s first key frame is
removed or shuffled in the frames list.

Use the Previous and Next frame actions to restart the movie either before of after the current
frame, respectively (works best when tweens = 0).

Load Movie
Load movie loads a swf without closing the current
movie. All of the higher levels have transparent
backgrounds which allow the layers underneath to be
seen. Unless the highest loaded movie is opaque and
equals or exceeds the size of the movie frame, you
will see the swfs in lower levels. The movie
background color, size, and speed are set by the movie
at level 0 (_level0).

The main movie and any swfs loaded into it should be in the same folder. Once a movie is
loaded, use the Tell Target commands to control the movies within the different levels. To
minimize interruptions, have a control movie on _level0 regulate the loading and playing of the
other movie segments; one segment can load while another segment is playing.

Loaded movies are origin point (0, 0) justified, that is, they are
lined up based on their top-left corner. In situations where
different movies will fill different portions of the browser, it is a
good practice to create a template with reference areas marked
out as a starting point for the contributing movies. (Grid
preferences are set under File > Preferences, Grid options are
located under Options > Grid.)

Button Actions 27

KoolMoves User Guide

Daisy chaining: A large movie that exceeds the Flash Player’s buffer size can be broken into
multiple swf files. As each swf ends, its last action is to load the next segment into _level0.
Daisy chaining is not typically controlled through buttons, but buttons are often used to test
pieces of code and validate the logic of complex actions, either with the Go To Frame or the
Load Movie commands. Say you have broken your project into four movies:

Each movie has a button on the last frame that opens the next movie (don’t forget the stop
command on the last frame to keep the movie from looping past the button). The button in
movie0.swf loads and launches movie1.swf, and so on. movie3.swf loads and launches
movie0.swf and the sequence repeats.

After validating each segment of the movie, you can remove the button and stop action on the
last frame, and enter the following action on the last frame:

this.onEnterFrame = function () {
 this.loadMovie(“movieN.swf”, “level0”);
}

Button Actions 28

KoolMoves User Guide

Unload Movie
Use Unload movie to remove a movie from a level.
Do not unload level 0 (_level0) – this will cause the
movie to crash.

Play Movie
Use this action to restart the current timeline. If the
timeline is already playing this action has no effect.

Stop Movie
This action stops the playhead at the current frame in
the current timeline. The stop command has no
impact on sounds that are playing or actions occurring
in other timelines (i.e., movie clips in the current level
and movies in other levels).

Stop Sounds
This action will stop all sounds currently playing in
the target timeline. Leaving the target blank will stop
all sounds in the movie. Enter the path to a movie clip
or level to stop specific sounds.

Button Actions 29

KoolMoves User Guide

Set Dynamic Text
Use this action to have a button load a string of text
into a dynamic text object. If no dynamic text objects
exist at author time, the Set Dynamic Text command
is grayed out in the list of button actions. Click on the
drop down arrow in the Object box to display a list of
all the dynamic text objects in the movie.

Enter the message you want displayed in the dynamic
text object.

Load Dynamic Text
Use this action to load text from a file into a dynamic
text object. If no dynamic text objects exist at author
time, the Set Dynamic Text command is grayed out in
the list of button actions. Be sure to include the path
to the text file.

Below is a text file where three strings are assigned to
three variables. Variables are used instead of the text
object name.

Note that A) a text object’s default variable
name is the object’s name followed by
“var”, and B) except for the first one, the
variables start with “&”.

A dynamic text object’s variable name is a property of the object – it
can be changed to any valid variable name by opening the Properties
data view and editing the value in the Variable name field. You can
even change it to the name of the text object (in this case txt1).

Button Actions 30

KoolMoves User Guide

Send Form Data
The Send Form Data action is equivalent to the ActionScript getURL(URL, URL target,
Method) global function:

• URL specifies the location (absolute or relative) of the external script to run or command
to execute.

• URL target identifies the browser window or frame where the command will be executed.
Enter the frame name, or select one of the predefined values:

o _blank – opens file in new browser window
o _parent – opens file in current browser frame
o _self – loads the results of a script execution into the current frame
o _top – replaces all framesets in browser with file

• Method is a literal string (either “GET” or “POST”) specifying how the current timeline’s
variables are sent to an external script.

Compared to the Go To URL command, the URL
field is much larger (to accommodate script
commands) and the Send Using field has been
added.

In the URL target field, type in the target frame
name or select a frame/window from the drop down
list.

If your form’s data field(s) will have chunks of data
greater than 255 characters, use the Post method,
otherwise either Get or Post can be used.

This command sends all variables on the current timeline. In order to send only specific
variables, place these variables and the corresponding button action within a movie clip.

The KoolMoves Send Form Data button action supports the following protocols:

Protocol Format Purpose
File file:///path/filename Access a local file
FTP ftp://path/filename FTP a remote file
HTTP http://path/filename Open a web page
Javascript javascript: command Execute a JS command in a browser
VBscript vbscript: command Execute a VB command in a browser
Mailto mailto:user@domain.com Send email via the default email app
Telnet telnet://domain.com:port#/ Open a Telnet connection

For more information on using forms to submit data, please see the Adobe Technical note How
to create and submit a form in Flash 4.

Button Actions 31

http://www.adobe.com/cfusion/knowledgebase/index.cfm?id=tn_13919
http://www.adobe.com/cfusion/knowledgebase/index.cfm?id=tn_13919
mailto:user@domain.com
http://path/filename
ftp://path/filename
file:///path/filename

KoolMoves User Guide

Printing from Within a Movie

The print() and printAsBitmap() ActionScript commands provide the capability to print frames
from within a movie. The print() function will send vector graphics to PostScript printers and
raster graphics to non-PostScript printers. printAsBitmap() only sends raster information but
supports alpha channels and color transformations. printAsBitmap() is functionally identical to
print().

print (level)
print (level, "Bounding box")
print ("target")
print ("target", "Bounding box")

Options for the Bounding box:
- bmovie (the bounding box of a specific frame)
- bmax (all of the bounding boxes of all the printable frames)
- bframe (the bounding box of each printable frame)

To limit the printing to specific Key Frames, label the key frames to be printed as #P; otherwise
all frames (including tweens) will be printed.

Button Actions 32

KoolMoves User Guide

FS Command
The FS Command button action is used to send commands to the Flash Player’s host application
(usually a web browser) and is comparable to the fscommand global function:

fscommand(command, parameters)

Command Argument Description
allowscale true/false “false” prevents a movie from scaling with changes

in the player’s window size.
exec application_name Launches an external application (include path in the

application_name argument).
fullscreen true/false “true” causes the player to fill the entire screen.
quit Stops the movie and closes the player.
showmenu true/false “false” suppresses the display of controls in the right-

click menu.
trapallkeys true/false “true” causes all keystrokes to be sent to the movie –

this disables keyboard control of the player window.

In this example, the movie is actually launching a
separate application in the movie’s folder.

Additional information can be found in the Adobe
ActionScript fscommand dictionary entry, in the
KoolMoves manual (Chapter 5 – Data Views > Score
/ Timeline > Actions & Sounds > FS Command).

JavaScript
Use the JavaScript button action to pass JavaScript
commands directly to the host application / browser.
Similar to the FS Command window, except any
arguments are included in the command line.

Javascript:command

Button Actions 33

http://www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actionscript_dictionary372.html

KoolMoves User Guide

Tell Target Actions

Tell Target is a means to communicate timelines without using ActionScript: any movie can
control another movie. Your movie has multiple timelines when you…
 1. have movie clips,
 2. create a SWF Object, or
 3. load a movie into a level other than _level0.

There are two basic Tell Target functions built into KoolMoves:
 1. Stop (the target timeline)
 2. Play (the target timeline)

The tell target actions work just like regular actions with one difference - you must define a
target in the target box. Inside a SWF each target is laid out much like a directory. To access the
current main movie's timeline leave the Target field blank. Use the “../” syntax to control a
higher timeline, or “/path/” to control a lower timeline. In the screenshot to the right above (Stop
Movie…), a button in _root/mc1 is controlling _root/mc10.

For loaded movies the syntax is a little different. To use Tell Target on a loaded movie you use
_leveln/ where n is the level of the loaded movie. If, for example, you want to control a loaded
movie in level 1 the target would be: _level1/. To control a SWF Object from the main movie
you can use either /Object name or just Object Name.

Button Actions 34

KoolMoves User Guide

Actions Property > Action Script…
All the actions covered in Actions Property > Dialogs could have been done with ActionScript.
However, most new computer animators are in such a rush that they don’t have time to learn
ActionScript before they make their first Flash movie. That’s why the dialog windows in the
preceding section were created (KoolMoves was created by a professional animator – he
understands the overwhelming desire to create).

As powerful as the dialog commands are, they are limited in scope and flexibility, and should
only be used until you have had time to learn ActionScript. In this section you will see how easy
it is to make those commands using ActionScript. The first few steps are the same as in Actions
Property > Dialogs:

To place code within the button itself, so that the code travels with the button,
select a button and open the Properties Data View.

In the Behavior properties, click on Actions
to open the Button Actions and Sounds
window.

The Actions tab is used to
create, edit, delete and
organize actions stored in a
button.

Click on the plus button with the
drop down menu, and select
Action Script… from the menu.

The ActionScript Editor is covered in Chapter 13 of the KoolMoves User Manual. However, for
the purposes of this user guide, you don’t really need to look up anything. Just remember to
click on OK to save your changes, click on Cancel to start over.

(The example to the left will work nicely
provided you have previously created a
dynamic text object named, "txt1". Note
that this example, is analogous to the Set
Dynamic Text dialog command, and has
all the same information: the event to look
for, the target dynamic text object’s name,
and the string to send. Everything else is
just a matter of formatting the information
for the computer’s sake.)

Button Actions 35

KoolMoves User Guide

When you click on OK, KoolMoves will check the code for syntax errors. In the following
pages there are examples that you can copy and paste into KoolMoves that should work 100% of
the time (hey, typographical errors happen). If you get an error message…

…make a note of the line number and error message. Then click on OK to go back and either fix
the problem or save your latest changes.

Clicking on No will save your latest changes, including any error you might have added to your
work in progress. To abandon your latest changes click on Yes and then on Cancel in the
ActionScript editor (ASE). Okay, enough about the ASE, back to programming buttons. The
general format for code placed on a button is:

on (event) {
 commands;
}

After your code is saved, it will have an entry in the Button
Actions and Sounds display area.

Buttons work with user events – actions caused by the user. User events allow you to make your
movies interactive. The ability to code actions in buttons was introduced in Flash 5. The
available events are the same as in the window dialogs, just capitalized differently and put in
parentheses:

(press)
(release)
(releaseOutside)
(rollOver)
(rollOut)
(dragOver)
(dragOut)

Button Actions 36

equals

KoolMoves User Guide

Just like in the dialog actions, we can combine events. In the example below the action is
executed when the button is clicked on and when it is released:

on (press, release)
 txt1.text = “Hello”;
}

To have multiple actions tied to different events on the same button, we can write additional
event handlers in the same block of code:

on (press) {
 txt1.text = “Hello”;
}

on (release) {
 txt1.text = “Goodbye”;
}

Button Actions 37

versus

equals

KoolMoves User Guide

Button Code Examples
Let’s look at some typical button actions done with ActionScript on the button. We are
assuming that the buttons with the following actions are on the main timeline (_level0 of _root),
and that the action should occur on (release). In many of the example below there is more than
one way to achieve the desired goal, in which case the simplest example was selected.

Opening the KoolMoves website in the current browser window:
on (release) {
 getURL(“http://www.koolmoves.com/”);
}

Opening the KoolMoves support page in a new browser window:
on (release) {
 getURL(“http://www.koolmoves.com/support.html”, “_blank”);
}

Jumping the playhead to key frame [number n / labeled exitSequence] and playing:
on (release) {
 gotoAndPlay(n);
}

on (release) {
 gotoAndPlay(“exitSequence”);
}

Loading test1.swf into level 1 (can also use this to load image files):
on (release) {
 loadMovieNum(“test1.swf”, 1);
}

Unloading the movie currently in level 1:
on (release) {
 loadMovieNum(“test1.swf”, 1);
}

Restarting the current timeline:
on (release) {
 play();
}

Stopping the current timeline:
on (release) {
 stop();
}

Stopping all sounds currently playing in the movie:
on (release) {
 stopAllSounds();
}

Button Actions 38

KoolMoves User Guide

Setting / replacing the text in dynamic text object txt1:
on (release) {
 txt1.text = “Hello World”;
}

Adding text to the text currently in a dynamic text object txt1:
on (release) {
 txt1.text += “Hello World”;
}

Loading text from message1.txt into dynamic text object txt1:
on (release) {
 loadVariables(“message1.txt”, “_root”);
}

Printing selected key frames of the movie (where selected frames are named “#p”):
on (release) {
 print(“_root”, “bframe”);
}

Printing a movieclip with printAsBitmap:
var pj = new PrintJob();

// open printer dialog
if (pj['start']()){

 // fit mc1 to page (not required)
 var scale = Math.min(pj.pageWidth / mc1._width, pj.pageHeight / mc1._height);
 mc1._xscale = mc1._yscale = scale * 100;

 // add page
 if (pj.addPage(mc1, null, {printAsBitmap:true})){

 // process all pages sent to the print spooler
 pj.send();

 }
}

Setting the movie to scale with the host application using fscommand():
on (release) {
fscommand(“allowscale”, “true”);
}

Sending a JavaScript command to the host application:

Button Actions 39

KoolMoves User Guide

on (release) {
 getURL(“javascript:command”);
}

Stopping the movie in level 1:
on (release) {
 _level1.stop();
}

Stopping movie clip mc3 in mc1:
on (release) {
 mc1.mc3.stop();
}

Button Actions 40

KoolMoves User Guide

Timeline Button ActionScript
As putting ActionScript on buttons is not much more complicated than working with the window
dialogs, putting button actions on the timeline is only slightly more complicated than putting the
actions directly on the button, and has its own advantages. While Flash allows you to place code
on your buttons and other objects, as your movies become more complicated, and your
knowledge of ActionScript increases, it makes sense to place all you code in one place as
opposed to searching the length of your movie for the piece of code that needs to be debugged.

Whether you use code directly on the button, or place the button code within the timeline is up to
you. In situations where the name of the button is being changed a lot, or the button is copied
between project files, it may make sense for the intermediate level ActionScript programmer to
embed the button code in the button itself.

We are interested in adding ActionScript that will define the actions for a button. The big
difference between this and placing the code directly on the button (accomplished in the
preceding section) is that we will need to identify the button in the action code.

To place code on the timeline, open the Score/Timeline data view and click on the Actions and
Sounds Tab.

Many actions have been placed
directly on the timeline in this
movie, and will execute when the
specific Key Frame loads in the
Flash Player. Note that there are no
actions on Key Frame 1.

It is a good practice when writing code for a multi frame movie to leave key frame 1 blank with
0 tweens, and to place all your code on key frame 2. In the Score/Timeline data view displayed
above, click on the key frame 2 in the frame navigation bar before adding the button action to the
timeline.

However, our first example is a single frame movie, so the above caveat is not applicable.

Next, click on the plus button with the dropdown arrow, and select
Action Script… This opens the ActionScript Editor (covered in
Chapter 13 – Action Scripting, of the KoolMoves User Manual). In
the example below, the code assigns actions to two buttons to
change the message in a dynamic text object.

Button Actions 41

KoolMoves User Guide

One of the buttons in the example to
the left will cause “Hello World” to fill
dynamic text object txt1 when the
mouse click is released. The other
button will fill the same box with
“Goodbye World”.

(Low on originality, but this example
illustrates the general programming
environment, relevant objects on the
stage and applicable data view. This is
a single frame movie, so the code is on
key frame 1.)

The following is the general format for creating a button event handler:

buttonObject.onEvent = function() {
 commands;
}

Buttons work with user events – actions caused by the user. User events allow you to make your
movies interactive. The ability to code button actions on a timeline was introduced in Flash 6.
The available event handlers are:

onPress()
onRelease()
onDragOver
onDragOut()

onReleaseOutside()
onRollOver()
onRollOut()
onSetFocus(oldFocus)
onKillFocus()

There are two new events – onSetFocus and onKillFocus. A button has “focus” when it has
either been navigated to with the Tab button, or focus has been assigned programmatically with
the Selection.setFocus() command. Actions tied to onSetFocus will occur when the button
receives focus, while onKillFocus actions occur when the button loses focus.

Button Actions 42

KoolMoves User Guide

Adding Sound to Button States
Use a button’s Sound property to open the Button Actions and
Sounds window.

Click on the Over Sound
/ Down Sound tab to set
the sound file for the
respective state.

Let’s look at adding a
sound to a button’s Over
state.

Click on the folder icon
to open an explorer
window, and select the
desired sound file.

The sound files duration and sampling
rate are displayed. Set Loops to 999 for
continuous play.

Edit the sound using a sound editor which has been
assigned in Preferences

Play the sound

Remove the sound

Adding Sound to Button States 43

KoolMoves User Guide

The Over state sound is activated for roll over, roll out, drag over, and drag out mouse events.
The Down state is activated for press and release mouse events.

At this time, KoolMoves only supports the PCM wav and the mp3 file types. Button sounds do
not play when testing your project in KoolMoves' internal player.

Sound files tend to be huge which can make the exported swf file huge. To conserve resources,
take these steps: in a sound editing program convert from stereo to mono and to the smallest
sample rate that gives you the quality you need. Shortening the sound track also helps.

If a sound plays longer than the movie plays and if the movie loops, the sound from the first loop
will continue playing during the second loop until the sound from the first loop finishes. This
effect worsens as the movie continues to loop. To solve this problem, add the Stop Sound action
to the last frame in the movie.

If your sound file is sampled at a rate other than 5500, 11025, 22050, or 44100, the sound will
play in the Flash player at a rate nearest to one of these four rates.

Adding Sound to Button States 44

KoolMoves User Guide

Button Gallery Categories (Folders)

Abstract

Business & Communication & People

Button Gallery Categories 45

KoolMoves User Guide

Email & Internet

Music

Navigation 1

Button Gallery Categories 46

KoolMoves User Guide

Navigation 2

Odds & Ends 1

Odds & Ends 2

Button Gallery Categories 47

KoolMoves User Guide

Button Gallery Categories 48

KoolMoves User Guide

Movie Clips as Buttons
As you’ve found out by now, buttons are easy to work with and very capable in making movies
interactive. However, as you become more proficient with ActionScript, you might consider
using movie clips. Movie clips have all the capabilities of buttons but a more generic object
design, allowing for greater flexibility. It is beyond the scope of this User Guide to cover movie
clips, but I would like to mention why advanced Flash programmers use movie clips in place of
buttons.

Dynamic Interactivity
Movie clips can be both created and removed via code at runtime. This allows new levels of
flexibility and interactivity as well as conserving system resources.

Additional Event Handlers
In addition to mouse actions occurring to the movie clip’s presence on screen, the clip can handle
additional mouse, keyboard and system events not directly tied to the clips presence on the stage.

Additional States
Because movie clips don’t come with states, a clip’s state consists of frames in the clip’s
timeline, with the playing of these frames tied to one or more events. A movie clip acting as a
button can have a different state for each event – you are not limited to just Up, Over and Down.

There are many threads with examples in the KoolMoves support forum concerning the use of
movie clips as buttons, and there is at least one sample at www.koolexchange.com.

Movie Clips as Buttons 49

http://www.koolexchange.com/
http://www.flashkit.com/board/forumdisplay.php?forumid=24

KoolMoves User Guide

Movie Clips as Buttons 50

KoolMoves User Guide

Summary
Buttons are symbols. The Symbol Library can be used to store, edit, and track buttons.

Buttons can have three states: Up, Over and Down. Each state can be scaled/edited separately.

There are three types of copied buttons based on how they relate to their parent button: linked
states and behaviors, linked states, and unlinked complete copies.

In KoolMoves, almost any visual element can be turned into a button. Bitmap images can also
be imported into button states, but become blurry when rescaled.

Every effect in KoolMoves can be applied to buttons or button states, one way or another.
A) Some effects can be applied directly to the button, affecting all button states;
B) Effects that can’t be applied to a shape within a button state, can be applied to a shape

within a movie clip within a button state; and
C) Effects applied to a movie clip which is then placed in a button state, cannot be edited

within the button state. However, effects on a movie clip within a movie clip within a
button state can be edited.

Movie clips inside button states can contain animations, swf files, and Flash Live Video files.

Items can be copied elsewhere and pasted into a button state, or copied in a button state and
pasted elsewhere.

Different items display different border boxes when selected.
If you don’t know what you are working with, double click
on the item to open the Properties data view.

Registered versions of KoolMoves come with buttons ready to use in the Button Gallery.

Buttons can be stored in project files, either in Button Gallery folders or in Symbol Libraries.

Button actions can be placed in a button’s Actions property, or applied dynamically via
ActionScript on the timeline containing the button.

Sound files can be assigned to a button’s Over and Down states.

Buttons made out of movie clips can handle additional events, are more flexible/customizable,
and can be created and removed dynamically.

Beware the Bleed Through effect.

Summary

Shape Movie Clip Button

51

KoolMoves User Guide

Summary 52

	Preface: About This User Guide
	Introduction
	Button Properties
	Symbol / Library Symbol
	Copying Buttons
	Buttons & the Symbol Library

	States
	Look
	Effects
	Behavior
	Ease in/out
	Bitmap caching

	Creating Buttons
	Creating a Button from Scratch
	Creating a Button via Property Data View
	Motion & Effects in Buttons
	Converting a Visual Element to a Button
	Loading Images into Button States

	Adding Buttons to Movies
	The Button Gallery
	Creating & Importing from Button Libraries

	Button Actions
	Actions Property > Dialogs
	Go To URL
	Go To Frame
	Load Movie
	Unload Movie
	Play Movie
	Stop Movie
	Stop Sounds
	Set Dynamic Text
	Load Dynamic Text
	Send Form Data
	Printing from Within a Movie
	FS Command
	JavaScript
	Tell Target Actions

	Actions Property > Action Script…
	Button Code Examples

	Timeline Button ActionScript

	Adding Sound to Button States
	Button Gallery Categories (Folders)
	Abstract
	Business & Communication & People
	Email & Internet
	Music
	Navigation 1
	Navigation 2
	Odds & Ends 1
	Odds & Ends 2

	Movie Clips as Buttons
	Summary

